Discover the perfect formula

HYDRANAL™
Product Overview Guide
Reagents for water determination by Karl Fischer titration
HYDRANAL™ Reagents from Honeywell Research Chemicals

Water content can affect product quality, texture, shelf life, chemical stability and reactivity. Karl Fischer titration is a universally accepted method for measuring water content in all types of substances, including chemicals, oils, pharmaceuticals and food. In 1979, researcher Dr. Eugen Scholz improved Karl Fischer titration by replacing noxious pyridine with imidazole. This innovation became the foundation of Hydranal™, the world’s leading pyridine-free reagents for Karl Fischer titration.

From Dr. E. Scholz’s pioneering research to the ongoing product improvements of today, Honeywell offers a wide range of Karl Fischer reagents for both volumetric and coulometric titrations for nearly all types of samples, completed by a broad range of standards.

With the inclusion of Fluka™ into Honeywell Research Chemicals, Hydranal became an important part of the overall product portfolio. Hydranal reagents and water standards have always been developed and produced in our plant in Seelze, Germany, meaning you can be sure to enjoy the same composition, quality, service and technical support you always have.

HYDRANAL Product Line at a Glance

<table>
<thead>
<tr>
<th>Product Line</th>
<th>Product Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDRANAL-Composite</td>
<td>The most flexible and commonly used reagents for one-component volumetric titration</td>
</tr>
<tr>
<td>HYDRANAL Special Media</td>
<td>Special reagents like Methanol Rapid, E-Types and K-Types</td>
</tr>
<tr>
<td>HYDRANAL-Titrant/Solvent</td>
<td>Reagents for two-component volumetric titration</td>
</tr>
<tr>
<td>HYDRANAL-Coulomat</td>
<td>Reagents for coulometric titration for samples with low water content</td>
</tr>
<tr>
<td>HYDRANAL-Water Standards</td>
<td>Standards with verified water content for titer determination, monitoring precision, accuracy, validation and inspection of Karl Fischer titrators</td>
</tr>
<tr>
<td>HYDRANAL-CRM Water Standards</td>
<td>Certified Reference Materials for titer determination, monitoring precision, accuracy, validation and inspection of Karl Fischer titrators</td>
</tr>
</tbody>
</table>

Advantages of HYDRANAL Reagents:

- High titration speed
- Stable end points
- Accurate results
- Long shelf life
- Wide applicability
- World leading technical support
The Chemistry of Karl Fischer Titration

The Karl Fischer technique for water determination, invented in 1935 by Karl Fischer, is a titration based on the Bunsen reaction. In 1979 it was postulated by Dr. E. Scholz as a two-step equation:

\[
(1) \quad \text{ROH} + \text{SO}_2 + \text{R’N} \leftrightarrow [\text{R’NH}]\text{SO}_3\text{R}
\]

\[
(2) \quad [\text{R’NH}]\text{SO}_3\text{R} + \text{H}_2\text{O} + \text{I}_2 + 2\text{R’N} \rightarrow 2[\text{R’NH}]\text{I} + [\text{R’NH}]\text{SO}_4\text{R}
\]

\[\text{ROH} = \text{alcohol, typically methanol}\]
\[\text{R’N} = \text{base}\]

The oxidation of alkylsulfite to alkylsulfate in reaction (2) consumes water, which ideally comes only from the sample. Since water and iodine are consumed in a 1:1 stoichiometric ratio, the amount of water in the original sample is calculated by the amount of iodine required to complete the reaction. The iodine is measured either volumetrically directly by volume or coulometrically by the amount of current required for the generation of iodine.

How the Base Affects Reaction Kinetics

The type of base (R’N) and its concentration affect the overall reaction rate. Traditionally, pyridine was used as the base. However, because of its weak basicity, pyridine cannot completely neutralize the alkyl-sulfurous acid intermediate. As a result, reaction (1) is slow, does not go to completion and the end point is not stable. Because of this lack of stability, the repeatability of the results is often very poor. In addition, pyridine has a noxious odor.

Imidazole and 2-Methylimidazole as Alternatives to Pyridine

Dr. E. Scholz and his research team sought to replace the pyridine with a stronger base with a higher affinity for the alkylsulfite. Imidazole was found to have even more benefits than pyridine besides not having the noxious odor. Imidazole allows reaction (1) to go to completion rapidly and provides a stable end point. Later on researchers found that adding a second base, 2-methylimidazole, to the imidazole, enhances stability and reduces the appearance of undesired crystallization.
Volumetric One-Component Titration - Titrating Agents

HYDRANAL-Composite

Hydranal-Composite is the world’s most frequently used pyridine-free Karl Fischer reagent. This one-component reagent has been proving its capabilities in volumetric titration for more than thirty five years in a large range of applications in the most diverse fields of research and industry. Ongoing development work has achieved significant improvements to this reagent.

Advantages of HYDRANAL One-Component Reagents:

- Unlimited water capacity
- Convenient and easy to use
- The greatest flexibility in working media selection
- Suitable for methanol-reacting compounds, e.g. ketones and aldehydes
- Long shelf life (three years)

Improved Composition

Hydranal-Composite contains all the reactants including iodine, sulfur dioxide, and the bases imidazole and 2-methylimidazole, dissolved in diethylene glycol monoethyl ether (DEGEE). Adding 2-methylimidazole in addition to imidazole improves the stability and eliminates the formation of crystals which can interfere with the titrator’s performance. The crystallization of the reagent was occasionally observed under the influence of airborne moisture and also after prolonged residence of the reagent in the Karl Fischer titrator’s tube system. This effect is prevented by a new and improved formulation.

Enhancement of Titer Stability

When comparing the old and new formulation it becomes obvious that the new formulation is significantly more stable with a loss of concentration less than 5% per year vs. approx. 10% for the old formulation. Hydranal-Composite is additionally stabilized with DEGEE as a solvent. The results of the tests into titer decline are shown in Figure 1.

![Figure 1. Results of the titer stability tests](image)

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Product Name</th>
<th>Description</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>34827</td>
<td>HYDRANAL-Composite 1</td>
<td>One-component reagent, titer ~1 mg/mL</td>
<td>500 mL; 1 L</td>
</tr>
<tr>
<td>34806</td>
<td>HYDRANAL-Composite 2</td>
<td>One-component reagent, titer ~2 mg/mL</td>
<td>500 mL; 1 L; 2.5 L</td>
</tr>
<tr>
<td>34805</td>
<td>HYDRANAL-Composite 5</td>
<td>One-component reagent, titer ~5 mg/mL</td>
<td>500 mL; 1 L; 2.5 L</td>
</tr>
<tr>
<td>34816</td>
<td>HYDRANAL-Composite 5 K</td>
<td>One-component reagent for titration of ketones and aldehydes, titer ~5 mg/mL</td>
<td>500 mL; 1 L; 2.5 L</td>
</tr>
</tbody>
</table>
With one-component reagents the medium (i.e. the solvent required) is chosen according to the dissolution and chemical properties of the sample substance being analyzed. The most commonly used medium is dry methanol. The speed, time taken and accuracy of the Karl Fischer reaction is influenced by the medium used in the titration vessel. The Hydranal-Composite, one-component reagents, are already buffered to an optimum of pH by using imidazoles. Thus the performance of the titrating agent is optimized to ensure a rapid Karl Fischer titration, however, there is still room for improvement on the use of the solvent.

HYDRANAL-Methanol Rapid

Methanol is the most commonly used medium in the titration vessel, however it is an unbuffered solvent. When using Hydranal-Methanol Rapid, you will see a clear improvement in speed and accuracy of the titration. This is due to the accelerators in the medium, which are unique to Hydranal-Methanol Rapid and enable an optimal Karl Fischer titration (see Figure 2).

HYDRANAL-CompoSolver E

In case a less toxic solvent is preferred, Hydranal-CompoSolver E, an ethanol based medium, has a similar performance to Hydranal-Methanol Rapid.

HYDRANAL-Solver (premixed)

Many non-polar samples (e.g. oils, fats, organic components) appear with a poor solubility in methanol and require the addition of a solubilizer. To overcome these challenges, a series of specially designed media has been developed based on the most suitable solvent mix.

HYDRANAL-K Media

For compounds reacting with methanol, like ketones and aldehydes, three different media have been developed. Comparing the three media based on their toxicity and capacity to suppress side effects, we recommend the use of Hydranal-Medium K as the first choice.

Advantages of HYDRANAL-Methanol Rapid:

- Much shorter titration time
- Rapid end point
- High accuracy of the analysis

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Product Name</th>
<th>Description</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>37817</td>
<td>HYDRANAL-Methanol Rapid</td>
<td>Medium containing accelerators</td>
<td>1 L; 2.5 L</td>
</tr>
<tr>
<td>34741</td>
<td>HYDRANAL-Methanol Dry</td>
<td>Medium for general use</td>
<td>1 L; 2.5 L</td>
</tr>
<tr>
<td>34734</td>
<td>HYDRANAL-CompoSolver E</td>
<td>Ethanol-based medium containing accelerators</td>
<td>1 L; 2.5 L</td>
</tr>
<tr>
<td>34697</td>
<td>HYDRANAL-Solver (Crude) Oil</td>
<td>Working medium containing methanol, xylene and chloroform for titration in oils</td>
<td>1 L; 2.5 L</td>
</tr>
<tr>
<td>37855</td>
<td>HYDRANAL-LipoSolver CM</td>
<td>Working medium containing methanol and chloroform for titration in non-polar samples</td>
<td>1 L</td>
</tr>
<tr>
<td>37856</td>
<td>HYDRANAL-LipoSolver MH</td>
<td>Working medium containing methanol and 1-hexanol for titration in non-polar samples</td>
<td>1 L</td>
</tr>
<tr>
<td>34698</td>
<td>HYDRANAL-Medium K</td>
<td>Less toxic working medium containing chloroform for ketones and aldehydes</td>
<td>1 L</td>
</tr>
<tr>
<td>34738</td>
<td>HYDRANAL-KetoSolver</td>
<td>Working medium free of halogenated solvents for ketones and aldehydes</td>
<td>500 mL; 1 L</td>
</tr>
<tr>
<td>34817</td>
<td>HYDRANAL-Working Medium K</td>
<td>Working medium containing chloroform and 2-chloroethanol for ketones and aldehydes</td>
<td>1 L</td>
</tr>
</tbody>
</table>
Volumetric Two-Component Titration

HYDRANAL-Titrant / Solvent

Two-component reagents have been developed to use the stability advantage of a pure alcoholic solution of iodine. Additionally, the buffered system provides a very fast titration performance.

Composition

In two-component reagents, the Karl Fisher reactants are separated into two solutions: the titrant and the solvent. Hydranal-Titrant contains iodine dissolved in an alcohol with a precisely defined concentration. Hydranal-Solvent is an alcoholic solution of sulfur dioxide and imidazole.

The alcohol is either methanol for standard reagents or ethanol for E-type reagents.

Further types of Solvent reagent based on different mixtures enable to meet the sample dissolution properties.

Advantages of HYDRANAL Two-Component Reagents:

- High titration speed
- Ideal accuracy for small amounts of water
- High buffer capacity
- Exact and stable titer
- E-type reagents: reduced toxicity compared to methanol
- Long shelf life (three years for titrants, five years for solvents)

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Product Name</th>
<th>Description</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>34811</td>
<td>HYDRANAL-Titrant 2</td>
<td>Two-component reagent, titer ~2 mg/mL</td>
<td>500 mL; 1 L; 2.5 L</td>
</tr>
<tr>
<td>34801</td>
<td>HYDRANAL-Titrant 5</td>
<td>Two-component reagent, titer ~5 mg/mL</td>
<td>500 mL; 1 L; 2.5 L</td>
</tr>
<tr>
<td>34800</td>
<td>HYDRANAL-Solvent</td>
<td>Working medium for two-component titration</td>
<td>1 L; 2.5 L</td>
</tr>
<tr>
<td>34723</td>
<td>HYDRANAL-Titrant 2 E</td>
<td>Two-component reagent, titer ~2 mg/mL</td>
<td>1 L</td>
</tr>
<tr>
<td>34732</td>
<td>HYDRANAL-Titrant 5 E</td>
<td>Two-component reagent, titer ~5 mg/mL</td>
<td>500 mL; 1 L; 2.5 L</td>
</tr>
<tr>
<td>34730</td>
<td>HYDRANAL-Solvent E</td>
<td>Working medium for two-component titration</td>
<td>500 mL; 1 L; 2.5 L</td>
</tr>
<tr>
<td>34812</td>
<td>HYDRANAL-Solvent CM</td>
<td>Working medium for two-component titration, containing methanol and chloroform for titration in non-polar samples</td>
<td>1 L; 2.5 L</td>
</tr>
<tr>
<td>34749</td>
<td>HYDRANAL-Solvent Oil</td>
<td>Working medium for two-component titration, containing methanol and 1-hexanol for titration in non-polar samples</td>
<td>1 L</td>
</tr>
<tr>
<td>34697</td>
<td>HYDRANAL-Solver (Crude) Oil</td>
<td>Working medium containing methanol, xylene and chloroform for titration in oils</td>
<td>1 L; 2.5 L</td>
</tr>
</tbody>
</table>
Coulometric Titration

HYDRANAL-Coulomat

Coulometric Karl Fischer titrations normally require two reagent solutions: an anolyte (the solution in the anodic compartment) and a catholyte (the solution in the cathodic compartment). Hydranal-Coulomat A-type or E-type reagents are used as anolytes. The anolytes contain iodide and a sulfur dioxide/imidazole buffer in suitable solvents. Hydranal-Coulomat CG reagents are used as catholytes.

Coulometric reagents based on different solvent compositions serve to support the broad variety of samples analyzed, i.e. Hydranal-Coulomat Oil contains methanol, xylene and chloroform for titration in oils or methanol-free Hydranal-Coulomat AK for titration of ketones to suppress negative side effects. Furthermore, some working techniques are supported by special reagents i.e. the use of Karl Fischer oven by Hydranal-Coulomat AG-Oven or the use of a cell without diaphragm by Hydranal-Coulomat AD.

Coulometric Cells

There are two different types of coulometric cells: those with and those without a diaphragm. The diaphragm separates the anode chamber from the cathode chamber. Oxidation of I⁻ to I² occurs at the anode, whereas the reduction of protons to H² occurs at the cathode. For cells without a diaphragm the anodic and cathodic compartments are not separated and only one reagent, the anolyte, is needed. Though the latter coulometric cell may seem more convenient to use, the cell with diaphragm achieves the highest accuracy down to the trace range of water. Recommendation details are given in description below the table.

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Product Name</th>
<th>Description</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>34807</td>
<td>HYDRANAL-Coulomat A</td>
<td>Anolyte preferred for cells with diaphragm*</td>
<td>500 mL</td>
</tr>
<tr>
<td>34836</td>
<td>HYDRANAL-Coulomat AG</td>
<td>Anolyte suitable for cells with and without diaphragm</td>
<td>500 mL; 1 L</td>
</tr>
<tr>
<td>34843</td>
<td>HYDRANAL-Coulomat AG-H</td>
<td>Anolyte for titration of long-chained hydrocarbons, preferred for cells with diaphragm*</td>
<td>500 mL</td>
</tr>
<tr>
<td>34739</td>
<td>HYDRANAL-Coulomat AG-Oven</td>
<td>Anolyte for determination with Karl Fischer oven, suitable for cells with and without diaphragm</td>
<td>500 mL</td>
</tr>
<tr>
<td>34820</td>
<td>HYDRANAL-Coulomat AK</td>
<td>Anolyte for titration of ketones, preferred for cells with diaphragm*</td>
<td>500 mL</td>
</tr>
<tr>
<td>34868</td>
<td>HYDRANAL-Coulomat Oil</td>
<td>Anolyte for titration of oils, preferred for cells with diaphragm*</td>
<td>100 mL; 500 mL</td>
</tr>
<tr>
<td>34726</td>
<td>HYDRANAL-Coulomat E</td>
<td>Anolyte based on ethanol, suitable for cells with and without diaphragm</td>
<td>500 mL</td>
</tr>
<tr>
<td>34810</td>
<td>HYDRANAL-Coulomat AD</td>
<td>Anolyte preferred for cells without diaphragm</td>
<td>500 mL</td>
</tr>
<tr>
<td>34840</td>
<td>HYDRANAL-Coulomat CG</td>
<td>Catholyte</td>
<td>10 x 5 mL</td>
</tr>
<tr>
<td>34821</td>
<td>HYDRANAL-Coulomat CG-K</td>
<td>Catholyte for titration of ketones</td>
<td>10 x 5 mL</td>
</tr>
</tbody>
</table>

* In theory all Hydranal-Coulomat anolytes may be used with either type of generator electrode: with or without a diaphragm. However, the anolytes which contain a co-solvent in addition to methanol show increased recoveries when used with a diaphragmless generator electrode. Therefore we recommend using a diaphragm generator electrode when working with a co-solvent containing anolyte. This will require the use of the appropriate catholyte.

Advantages of HYDRANAL Coulometric Reagents:
• Easy to use
• High accuracy for trace amounts of water
• Stable conditions of the titration vessel
• Broad product range
• Long shelf life (up to five years)
Titer Standardization and Instrument Inspection

HYDRANAL-Water Standards

Quality management plays an important role in Karl Fischer titration. Calibration, validation and inspection of analytical instruments and reagents is performed with a specific amount of water, either pure water or water standards. The challenge with pure water is the low amount required (10-50 mg for volumetry, and 0.1-1 mg for coulometry), which is difficult to handle and weigh.

We therefore recommend Hydranal-Water Standards with an exactly confirmed water content for:

- Titer determination
- Monitoring precision and accuracy
- Validation and inspection of Karl Fischer titrators according to ISO, GMP, GLP and FDA guidelines

Traceability to a national standard or to a SI unit is often required in these guidelines. All Hydranal-Water Standards are tested against external reference material from national metrological institutions as the NIST (National Institute of Standards and Technology, USA) standard reference material SRM 2890, Water Saturated Octanol or CRM 4222 Water in Mesitylene from National Metrology Institute of Japan (NMIJ). Additionally they are calibrated based on high purity water.

Liquid standards consist of a solvent mixture with specific composition and precisely determined water content. They are packaged in glass ampoules under argon. Each box contains ten single-use ampoules which are easy to open (pre-notched).

Solid standards contain defined amounts of chemically bound water suitable for both general use as well as for the Karl Fischer oven. These standards are packed in amber glass bottles.

Advantages of HYDRANAL-Water Standards:

- Broad product range for volumetric and coulometric Karl Fischer applications
- Manufactured according to current ISO requirements
- Tested against NIST SRM 2890
- Long shelf life (up to five years)
- Convenient packaging
- Supplied with detailed instruction for use
- Report of Analysis showing the exact water content is included
HYDRANAL–CRM Water Standards

In 2014, Hydranal Technical Service in Seelze completed its combined accreditation according to ISO/IEC 17025 and ISO Guide 34, the so-called “Gold Standard Accreditation”, which is the highest achievable quality level for producers of Certified Reference Materials (CRMs). With the double accreditation, Hydranal introduced the very first commercially available CRM Water Standards for Karl Fischer titration.

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Product Name</th>
<th>Description</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>34425</td>
<td>HYDRANAL–CRM Water Standard 10.0</td>
<td>Liquid CRM standard, water content 10.0 mg/g = 1.0%</td>
<td>10 x 8 mL</td>
</tr>
<tr>
<td>34426</td>
<td>HYDRANAL–CRM Water Standard 1.0</td>
<td>Liquid CRM standard, water content 1.0 mg/g = 0.1%</td>
<td>10 x 4 mL</td>
</tr>
<tr>
<td>34424</td>
<td>HYDRANAL–CRM Sodium Tartrate Dihydrate</td>
<td>Solid CRM standard, water content ~15.66%</td>
<td>10 g</td>
</tr>
<tr>
<td>34849</td>
<td>HYDRANAL–Water Standard 10.0</td>
<td>Liquid standard, water content 10.0 mg/g = 1.0%</td>
<td>10 x 8 mL</td>
</tr>
<tr>
<td>34828</td>
<td>HYDRANAL–Water Standard 1.0</td>
<td>Liquid standard, water content 1.0 mg/g = 0.1%</td>
<td>10 x 4 mL</td>
</tr>
<tr>
<td>34847</td>
<td>HYDRANAL–Water Standard 0.1</td>
<td>Liquid standard, water content 0.1 mg/g = 0.01% (shelf life 2 years, to be stored at 2-8°C)</td>
<td>10 x 4 mL</td>
</tr>
<tr>
<td>34446</td>
<td>HYDRANAL–Water Standard 0.1 PC</td>
<td>Liquid standard water content 0.1 mg/g = 0.01% (improved stability compared to 34847: shelf life 5 years, to be stored at room temp.)</td>
<td>10 x 4 mL</td>
</tr>
<tr>
<td>34694</td>
<td>HYDRANAL–Water Standard Oil</td>
<td>Liquid standard based on mineral oil, water content approx. 10 ppm (0.001%)</td>
<td>10 x 8 mL</td>
</tr>
<tr>
<td>34696</td>
<td>HYDRANAL–Standard Sodium Tartrate Dihydrate</td>
<td>Solid standard, water content ~15.66%</td>
<td>25 g</td>
</tr>
<tr>
<td>34693</td>
<td>HYDRANAL–Water Standard KF Oven 140-160°C</td>
<td>Solid standard for control of Karl Fischer ovens, water content ~5%, based on lactose</td>
<td>10 g</td>
</tr>
<tr>
<td>34748</td>
<td>HYDRANAL–Water Standard KF Oven 220-230°C</td>
<td>Solid standard for control of Karl Fischer ovens, water content ~5.55%, based on potassium citrate</td>
<td>10 g</td>
</tr>
</tbody>
</table>
Auxiliaries for Karl Fischer Titration

Karl Fischer titration is applied to multifarious substances. The nuances in sample properties influence the Karl Fischer titration differently. There are a number of ways to adjust the working conditions.

Solubilizers

In special cases the addition of solubilizer is required in order to enable a direct titration of the sample and avoid complicated and error-prone pre-dissolution and pre-extraction steps.

Buffers

The Karl Fischer reaction is pH dependant, with pH 5–7.5 being the ideal range. Strongly acidic samples slow the reaction and must be neutralized without inducing an alkaline reaction of the working medium prior to starting the titration. Strong bases can increase the pH of the working solution if the basicity exceeds the buffering capacity of the reagent. A titration end point will not be reached. Strong bases also must be neutralized prior to starting the titration.

Drying agents

Special drying agents are suitable to hold the near environment of the Karl Fischer equipment on a low water level or to dry carrier gases in case of oven technique.

HYDRANAL-Moisture Test Kit

For rough measurements without a titrator, special test kits for visual water determination according to Karl Fischer can be used. The set contains syringes, titration vessel and reagents: 2 x 500 mL Hydranal-Solvent E (34730), 100 mL Hydranal-Titrant 5 E (34732) and 100 mL Hydranal-Standard 5.0 (34813). Refills can be ordered separately.

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Product Name</th>
<th>Description</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>34724</td>
<td>HYDRANAL-Formamide Dry</td>
<td>Solubilizer, max. 0.02% water</td>
<td>1 L</td>
</tr>
<tr>
<td>37863</td>
<td>HYDRANAL-Chloroform</td>
<td>Solubilizer, max. 0.01% water</td>
<td>1 L</td>
</tr>
<tr>
<td>37866</td>
<td>HYDRANAL-Xylene</td>
<td>Solubilizer, max. 0.02% water</td>
<td>1 L</td>
</tr>
<tr>
<td>34804</td>
<td>HYDRANAL-Buffer for Acids</td>
<td>Liquid buffer medium, based on imidazole</td>
<td>500 mL</td>
</tr>
<tr>
<td>37859</td>
<td>HYDRANAL-Buffer for Bases</td>
<td>Liquid buffer medium, based on salicylic acid</td>
<td>1 L</td>
</tr>
<tr>
<td>32035</td>
<td>HYDRANAL-Benzoic Acid</td>
<td>Buffer substance</td>
<td>500 g</td>
</tr>
<tr>
<td>37865</td>
<td>HYDRANAL-Salicylic Acid</td>
<td>Buffer substance</td>
<td>500 g</td>
</tr>
<tr>
<td>37864</td>
<td>HYDRANAL-Imidazole</td>
<td>Buffer substance</td>
<td>500 g</td>
</tr>
<tr>
<td>34813</td>
<td>HYDRANAL-Standard 5.0</td>
<td>Test solution for volumetric titration, water content 5.00 mg/mL</td>
<td>100 mL; 500 mL</td>
</tr>
<tr>
<td>34803</td>
<td>HYDRANAL-Sodium Tartrate Dihydrate</td>
<td>Test substance for volumetric titration, water content ~15.66%</td>
<td>100 g</td>
</tr>
<tr>
<td>34802</td>
<td>HYDRANAL-Water-in-Methanol 5.0</td>
<td>Reagent for volumetric back titration, water content 5.00 mg/mL</td>
<td>500 mL; 1 L</td>
</tr>
<tr>
<td>34788</td>
<td>HYDRANAL-Humidity Absorber</td>
<td>Drying agent for air and gases with indicator</td>
<td>500 g; 1 kg</td>
</tr>
<tr>
<td>34241</td>
<td>HYDRANAL-Molecular Sieve 0.3 nm</td>
<td>Drying agent for air and gases</td>
<td>250 g</td>
</tr>
<tr>
<td>37858</td>
<td>HYDRANAL-Moisture Test Kit</td>
<td>Test kit for the visual water determination according to Karl Fischer without titrator</td>
<td>1 kit</td>
</tr>
</tbody>
</table>
Technical Support

For more than 35 years, the Hydral Technical Service Team has been gathering extensive and unmet experience and insights into Karl Fischer titration and its related challenges.

If you are looking to improve your Karl Fischer titration performance, the team of Hydral experts can support you with:

- Selecting the most suitable Karl Fischer reagents for your samples
- Recommending application methods
- Troubleshooting technical problems (solubility, side reactions, etc.)
- Technical Karl Fischer seminars and trainings
- Comprehensive literature

To learn more about Hydral reagents, visit hydranal-honeywell.com

Please, do not hesitate to contact us at hydranal@honeywell.com or contact our Hydral specialists directly:

Europe and Global Market
Thomas Wendt
HYDRANAL Center of Excellence
Seelze, Germany
Tel: +49-5137 999-353
Fax: +49-5137 999-698
E-Mail: Thomas.Wendt@honeywell.com

Europe and Global Market
Roman Neufeld
HYDRANAL Center of Excellence
Seelze, Germany
Tel: +49 (0) 5137 999-451
E-Mail: Roman.Neufeld@honeywell.com

Europe and Global Market
Agnieszka Kossakowska
HYDRANAL Technical Specialist
Warsaw, Poland
Tel: +48 512 355 628
E-Mail: Agnieszka.Kossakowska@honeywell.com

USA and Canada
Doug Clark
HYDRANAL Technical Center
St. Louis, MO
Tel: 1-800-Hydral
(1-800-493-7262)
E-Mail: Douglas.Clark@honeywell.com

Resources: lab-honeywell.com/resources
Laboratory Reports: lab-honeywell.com/hydranal-search
Events: lab-honeywell.com/events
Find a Distributor: lab-honeywell.com/find-distributor
Find CoA: lab-honeywell.com/coa
Find MSDS: lab-honeywell.com/sds
To learn more about Honeywell’s Research Chemicals Portfolio, visit lab-honeywell.com or email us at RCC@honeywell.com

AMERICAS
Honeywell Corporate Headquarters
115 Tabor Road
Morris Plains, NJ 07950

Manufacturing Facility
1953 South Harvey Street
Muskegon, MI 49442

EUROPE
Honeywell Specialty Chemicals
Seelze GmbH
Manufacturing Facility
Wunstorferstrasse 40
30926 Seelze, Germany

ASIA/PACIFIC
Asia Pacific Headquarters
Honeywell (China) Co. Ltd.
430 Li Bing Road
Zhang Jiang Hi-Tech Park
Pudong New Area
Shanghai 201203

Honeywell Specialty Chemicals
New Pier Takeshiba, South Tower Building
20th Floor, 1-16-1 Kaigan
Minato-ku, Tokyo, Japan 1050022

All statements and information provided herein are believed to be accurate and reliable, but are presented without guarantee, warranty or responsibility of any kind, express or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement, and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated herein, or that other measures may not be required. User assumes all liability for use of the information and results obtained.

Fluka and Hydranal are trademarks of Honeywell Specialty Chemicals Seelze GmbH.

HYD-001-0004-ENG | 06/18v_15 | 656 RC
© 2018 Honeywell International Inc. All rights reserved.